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BALLISTIC LIMIT OF DOUBLE-WALLED 

METEOROID BUMPER SYSTEMS 

By Richard Madden 
Langley Research Center 

SUMMARY 

A model has been developed for the theoretical analysis of double-walled meteor- 
oid bumper systems. The model is applicable for the range of velocities attributed to 
meteoroids in space. A normal density function h a s  been used to represent the mass  of 
the spray emanating from the bumper. The equations of linear plate theory are used to 
describe the behavior of the spacecraft main wall and to determine a ballistic limit 
criterion. A parametric study is performed to determine the effects of pertinent param- 
eters.  In addition, the analysis is applied to  the determination of the mass  distribution 
between bumper and main spacecraft wall that results in the greatest ballistic limit 
velocity for  the system. 
may be used by designers of spacecraft. The equation illustrates that the ballistic limit 
velocity is proportional to the square of the spacing between walls and also that the high- 
es t  ballistic limit velocity is achieved when the mass per  unit area of the bumper equals 
the mass  per unit area of the main wall. The theory has predicted the same trends evi- 
denced in the highest velocity experimental data available in the literature. 

The model has  yielded a simple ballistic limit equation that 

INTRODUCTION 

Because of the long durations of proposed space flights, the spacecraft designer 
must consider the structural implications of many aspects of the space environment. 
particular importance is the development of protective measures to insure the integrity 
of a spacecraft hull during its encounter with the meteoroid environment. 

Of 

The design of protective systems depends on the ability to predict the behavior of 
the systems under hypervelocity impact conditions. 
yielded data on the ballistic limits of single homogeneous spacecraft walls. However, 
ground-facility experimentation has shown that double-walled structures or  "meteoroid 
bumpers," illustrated in  figure 1, give more meteoroid protection per unit mass  than 
single walls. 
applicable to  double-walled structures, several authors have attempted to develop theories 
which describe double-wall behavior (refs. 1 and 2). In references 1 and 2 the bumper 

Available theoretical analyses have 

Since the information obtained from single-wall analyses is not directly 
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( a )  Before *act. (b) After impact. 

Figure 1.- Double-walled configuration before and after impact. 

and main w a l l  were treated separately. The present model w a s  developed to integrate 
the behavior of the bumper and main wall so that a single expression might be available 
to aid the spacecraft designer in his attempt to develop adequate protective systems. 

SYMBOLS 

A, B constants of integration 

a maximum amplitude of assumed spray-mass distribution 

C speed of sound in main wall, 

d projectile diameter 

E Young's modulus of main-wall material 

thickness of bumper and main wall, respectively hPh2 

Jo (Pr),  J 1 (Pr) Bessel functions of order  0 and 1, respectively 

L 

2 

energy loss during impact with bumper 



m17m2 mass  per  unit area of bumper and main wall, respectively 

m* mass  of bumper that contributes to  spray 

mass  of projectile mP 

m(r),m(@) functions describing mass  distribution in spray 

n integer 

P transform parameter 

r radial coordinate 

S spacing between bumper and main wall 

t t ime 

V 

v 2  

VP projectile velocity 

initial velocity of main wall 

velocity imparted to main wall by spray 

'S,A 

VS,R 

W 

CY 

Y 

A 

6t 

E 

axial velocity of center of mass  of spray 

average radial velocity of spray 

lateral deflection of main wall 

t ime parameter 

nondimensional parameter , mP(mP + "*) 
4m *m2$ 

standard deviation of spray - m as s distribution 

time required for  spray center of mass to  t raverse  distance between bumper 
and main wall 

cri t ical  strain 
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I-1 Poisson's ratio for main wall 

density of bumper and main wall, respectively Pl'P2 . 
U 

'c r 

4 

v4 

stress at origin 

critical stress 

dummy integration variable 

biharmonic operator 

A bar over a symbol indicates the forward Hankel transform of that variable. 

ANALYSIS 

Laboratory experiments have shown that the combined thickness of bumper and 
main spacecraft wall required to defeat a given projectile is not a monotonic function of 
velocity. In fact, three ranges are required to define the entire velocity spectrum. 
These ranges can be defined physically by considering the changes in phenomena which 
occur during and after perforation of the bumper. 

Figure 2 presents the total thickness required to defeat a given projectile as a 
function of projectile velocity. No scale is shown, and the curve serves  mainly to illus- 
t ra te  the trends. In the lowest velocity range the projectile remains essentially intact 
during perforation of the bumper and the linear relation between total thickness and 
velocity as derived from single-plate theory appears to be reasonable. 
ref. 3.) A s  the velocity increases, fragmentation of the projectile increases  and con- 
sequently the slope of the curve diminishes. With further fragmentation, the curve 
reaches a maximum at which the low velocity range is terminated. 

(See, for  example, 

With further increases in velocity the intermediate range is encountered. In this 
range the total thickness required decreases because of the increased fragmentation and 
the more predominant role played by melting and vaporization in the spray. This range 
is terminated at a minimum which occurs when no fur ther  fragmentation and melting take 
place in the spray. 

Additional increments in  the velocity result  in no phenomenological changes but do 
increase the impulse applied to the main spacecraft wall. The increased impulse causes 
greater  s t resses  i n  the main wall and consequently the total thickness required to defeat 
the projectile again rises. This high velocity range is applicable for  meteoroids. 
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Velocity 

Figure 2.- Ballistic l imit thickness of double-walled structures. 

A s  illustrated in  figure 2, the majority of experimental data available in the litera- 
ture has been confined to the low and intermediate velocity ranges. In fact, the only 
available data definitely in the high velocity range are presented in reference 4. 

The model developed in this paper assumes the spray to be completely fragmented 
and it is therefore valid only in the high velocity range. Thus, the comparison of the 
results from the model with experiment must be made with care  to insure that the experi- 
mental data lie in  the proper velocity range. The mathematical development of the model 
and the assumptions used in the development a r e  discussed in the next section. 

MODEL 

The model is confined to the determination of the ballistic limit of the double- 
walled structure,  and it yields no additional information on such results as hole size 
because linear elastic small-deflection plate theory has been used in calculations 
referr ing to the main wall. Linear plate theory, although not valid for hole-size deter- 
minations, should be valid in determining the ballistic limit, inasmuch as extremely high 
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st rain rates develop. The s t r e s s  at the axis of symmetry has been used as an indicator 
of the first fracture.  

Assumptions 

It has been assumed that the bumper serves  to fragment the projectile through 
melting and vaporization and to diverge the spray. Momentum is conserved during 
impact with the bumper in order  to relate the axial velocity of the center of mass  of the 
spray to the original impact velocity. This procedure yields the familiar result, that 
the most important bumper property is its mass per unit a rea  (see, for example, ref. 5). 

A balance of energy for the process of impact with the bumper reveals that a por- 
tion of the original kinetic energy must be dissipated. The dissipation of this kinetic 
energy is the key to the present model. It is possible to dissipate this energy in  many 
ways - for  example, internal-energy increase, impact flash, or kinetic energy due to 
radial motion. In the present model, impact flash and internal-energy increase are 
assumed negligible; thus, energy is dissipated solely by radial motion of the spray. The 
average radial velocity of all particles is determined by equating the kinetic energy of 
radial velocity to the energy that must be dissipated during the impact with the bumper. 
It has been assumed that the spray has a uniform axial velocity as predicted from the 
momentum equation and therefore all particles impact the main wall at the same time. 
Thus all the particles a r e  assumed to be concentrated in a plane through the center of 
mass  perpendicular to the axial direction. This assumption is reasonable, since the 
velocity of the main wall  after impact is much less than the velocity of the incident spray. 

A Gaussian distribution of particle spray mass  was assumed. This distribution 
approximates that found experimentally in reference 6. Also, in reference 7 it was  
noted that the spray-mass distribution, obtained theoretically by using a digital com- 
puter to solve the hydrodynamic equations, is approximately Gaussian. 

Mathematical Development 

Lateral-deflection equation.- The main wal l  of the spacecraft is assumed to behave 
elastically and the appropriate equations are taken from linear plate theory. In cylindri- 
cal coordinates the lateral-deflection equation may be written as 

4 2 8% 

at2 
V w = - K  - 

where 
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, Since the main wall is assumed to be of infinite extent, this equation is ideally suited for  
a Hankel transform in the variable r (see, f o r  example, ref. 8). The forward and 
inverse Hankel transforms are defined by the following integrals: 

f(p) = [ O' f(r)rJo(pr)dr 
0 

By multiplying equation (1) by rJo(pr)dr, integrating by parts, and then recognizing 
the forward transform (eq. (2)), the following equation is obtained: 

2- - p w r J  (pr) + K2 + p4W = 0 '[ ' 1; dt 

The transformed differential equation is 

when at the boundaries of the plate at zero and infinity 

Jo(pr)r  LF ar .(, ar = 0 

The main wal l  under consideration is assumed to have zero deflection and shear 
per  unit length at infinity and to have zero slope and finite shear at the origin. These 
boundary conditions, coupled with the kernel of the transform, satisfy equations (5). The 
solution for equation (4) may be written as 

- w = A(p)sin p2 1 + B(p)cos p2 K K 
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Applying the condition that the initial displacement of the plate vanishes gives 

- 
w = A(p)sin p2 f_ 

K 

The coefficient A(p) in  equation (6) is determined from the transform of initial 
velocity V and may be written as 

(7) K -  
A(P) = - WP) 

P2 

Inserting equations (6) and (7) into the inverse Hankel transform (eq. (3)) gives 

00- 

w(r,t) = K Jo Jo(pr)sin p2 dp K 

Velocity distribution.- In analyzing a meteoroid bumper system there is no well 
established method for obtaining the velocity distribution applied to  the spacecraft main 
wall. However, an approximate velocity distribution subject to an assumption on the 
distribution of mass  in the spray emanating from the bumper may be obtained in the fol- 
lowing manner. 

The axial velocity of the center of mass  of the spray is obtained by balancing the 
momentum of the incoming projectile and the momentum of the material  forming the 
spray. The momentum balance is written as 

where m* is the mass  removed from the bumper. An assumption on the value of m, 
is presented subsequently. 

When an energy balance is attempted, the kinetic energy after impact is found to be 
less than the original projectile kinetic energy. This  energy must therefore be converted 
into internal energy, kinetic energy of radial velocity, impact flash, and so forth. 

The energy equation may be written as 

where L is the kinetic energy loss  during the original impact. Solving f o r  L f rom 
equations (9) and (10) gives 

L = L (  mpm* ).P 2 
2 m p + m *  

It has been assumed that all of this available energy goes into kinetic energy due to the 
radial velocity of the spray. Equating L in equation (11) to  the kinetic energy of radial 
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velocity gives the average radial velocity of the spray as 

- p P m *  
'S,R - mp + m, 'P 

Assumed mass distribution.- As mentioned previously, the mass  distribution is 
assumed to be approximated by a normal distribution law. The mass per unit area 
impacting the main wall is thus given by 

m(r) = ae - x$ 
The two parameters a and A in  equation (13) a re  determined by integrating the 
assumed mass distribution and equating this result to the mass of the spray and by 
determining the average radial location of the spray particles. By integrating the mass 
distribution and equating the result to the mass  of the spray, the following equation is 
obtained : 

m + m, = 277 s6p rm(r)dr P (14) 

The average radial location of the spray particles is determined by multiplying the 
radial velocity from equation (12) by the time required for the spray to t raverse  the 
distance between the bumper and the main spacecraft wall. This time is determined from 
the axial velocity of the center of mass  of the spray and the distance between the walls. 
The time is thus given by 

s(mp + m*) 
bt  = 

mP'P 
(15) 

By multiplying the radial velocity by this t ime and equating the product to  the average 
location of the spray particles, the following equation is obtained: 

2n c o 2  r m(r)dr 
m p + m *  0 

Using equation (13) with equations (14) 
spray as 

A =  

and (16) gives the parameters associated with the 

a =  
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Balancing the momentum of the spray from the bumper before impact with the 
main wall, and the momentum of the spray and main spacecraft wall  after impact, gives 

where m2 = p2h2. By substituting the assumed mass  distribution from equation (13) and 
equating integrands, the velocity distribution applied to the main wall may be written as 

mpVP 

(mp + m,) + 4m ~2 IT1* e2 A 

v2 = l(y 
mP 

where A is determined from equations (17). 

Stresses and ballistic limit equation.- A critical s t r e s s  at the origin is used as the 
criterion for the ballistic limit. At the origin the radial and circumferential s t r e s ses  
a r e  equal; therefore either stress may be considered. From linear plate theory the 
appropriate equation is 

It should be noted that at the origin, since both s t resses  are equal, the cr i t ical-s t ress  
criterion i s  equivalent to a critical-strain criterion. The relation between stress and 
strain is 

Equation (8) may now be differentiated twice with respect 
substituted into equation (19) to yield 

(20) 

to r, evaluated at r = 0, and 

U =  KEh2 s- pv(p)sin p2 a dp 
4(1- IL) 0 

The integral representation of the transformed initial velocity (obtained by applying 
equation (2) to equation (18)) is inserted into equation (21) and the resulting equation 
reduced to give 
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where 

By expanding the interior integral 
following equation is obtained: 

for values of y < 1 and integrating term by term, the 

n= 1 

Performing the integration yields 

where 
2 t  a!=-- 

A2 

If the series is maximized in time to determine the maximum stress, 
tion (23) may be determined from 

a! in equa- 

n+l n 1 - n 2 2  

n= 1 

Equations (23) and (24) may be solved to give the ballistic limit for any system 
with y < 1. However, present impact tes t s  and meteoroid experiments correspond to 
values of y on the order  of 0.01 or less. Thus, a one-term expansion in equations (23) 
and (24) is adequate to describe all practical systems. The full series solution of equa- 
tions (23) and (24) is used only to determine the limits of applicability of the simplified 
solution (see fig. 3). 

Simplified ballistic limit equation.- Performing the one-term expansion on equa- 
tions (23) and (24) yields the following simplified ballistic limit equation: 

It should be noted that the one-term solution corresponds physically to neglecting the 
m a s s  of the spray after impact in determining the initial velocity applied to the main wall. 
In the present analysis m, is taken to be the mass of a disk of the same diameter as 
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the original projectile. This assumption may be easily modified when experiment or  
theory gives a better value for m*. Therefore, 

ml (26) nd2 m* = - 
4 

Inserting this expression for m, into equation (25) gives 

v p  = 

S 2 2  d mlmZ 

The quantity in brackets is composed of material constants for the main wall; however, 
a value of the critical fracture s t r e s s  is not available at the required strain rates. It is 
suggested that the bracketed quantity be lumped into one factor which may be determined 
from impact experiments. 

Inspection of equation (27) reveals that the ballistic limit velocity is linearly pro- 
portional to the mass  per unit a rea  of the bumper, the mass  per unit area of the main 
wall, and the square of the spacing and is inversely proportional to the square of the pro- 
jectile mass. Caution must be used in determining the dependence on the projectile 
diameter since the projectile mass  is also a function of the diameter. 

Optimum mass distribution.- One of the fundamental problems in meteoroid bumper 
design is the determination of the distribution of mass  between the bumper and main wall 
that yields the highest ballistic limit velocity. The symmetry in equation (27) requires 
that the optimum distribution be or, equivalently, that the mass  per unit a r ea  
of the bumper equal the mass  per unit area of the main wall. 

m1 = m2 

RESULTS AND DISCUSSION 

Results are presented for the ballistic l imits and the optimum distribution of mass  
between bumper and main spacecraft wall for double-walled structures.  These results 
have been obtained by using both the simplified solution and the full series expansion. 
Representative plots have been included for the ballistic limit velocity, as a function of 
the double-wall parameter y, and the variation of ballistic limit velocity with distribu- 
tion of mass between bumper and main wall. 

In figure 3 a nondimensional ballistic limit velocity is shown plotted as a function 
of y for  both the full se r ies  solution, equation (23), and the simplified solution, equa- 
tion (25). The two solutions differ by approximately a factor of two in  the a r e a  of 
y = 1; however, for y < 0.06 they are essentially identical. Since they behave essen- 
tially the same over the entire range of y between 0 and 1, the trends predicted f rom 
the simplified solution a r e  also applicable to  the full se r ies .  

12  
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Figure 3.- Nondimensional ballistic l imi t  velocity as a function of parameter y .  
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The trends predicted from equation (25) seem to be substantiated experimentally. 
The linear dependence on the mass  per unit a rea  of the bumper has been observed by 
many experimentalists (see, for example, ref. 8). The dependence on the spacing 
squared and the fact that the required backup thickness is a function of the projectile 
diameter cubed were observed in reference 2. If a spherical or cylindrical projectile 
of unit aspect ratio is assumed, equation (27) predicts the backup thickness as a function 
of the fourth power of the projectile diameter. However, caution must be applied in 
trying to verify the entire formula since the equation is valid only in the highest velocity 
regime. Only recently have data been obtained at velocities high enough to constitute 
compatability with this theory (see ref. 4). Unfortunately the high-velocity data a r e  not 
sufficiently refined for use in giving concrete data points to validate the theory. How- 
ever, they can be and have been used to evaluate trends. 
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Figure 4.- Nondimensional ballistic l imi t  velocity as a funct ion of distr ibution 
of mass between bumper and main wall. 

Figure 4 illustrates the 
behavior of a nondimensional 
ballistic limit velocity as the 
mass  distribution between the 
bumper and main wall  is varied. 
The curve is symmetrical about 
the maximum, where the mass  
per unit a rea  is equally appor- 
tioned. The curve i l lustrates the 
same tendency as the reduced 
data in reference 4 - that is, a 
parabolic distribution with a 
maximum when the mass  per unit 
area of the bumper and main wall 
a r e  equal. Early experimental 
results have indicated that the 
system with 25 percent of the 
mass  per  unit a rea  allotted to  
the bumper is the most efficient. 
This result is plausible for  the 

low and intermediate velocity ranges since the spray is not completely fragmented. 
However, f o r  the high velocity range, where the spray is entirely fragmented, the 
present result is applicable, as evidenced by recent experimentation (ref. 4). 

14 



CONCLUDING REMARKS 

The methods of linear plate theory have been used to develop an expression for the 
ballistic limit of double-walled structures. This expression predicts behavior which 
corresponds to the highest velocity experiments available in  that it predicts that the bal- 
listic limit is a linear function of the mass  per unit area of the bumper and a quadratic 
function of the spacing between the walls. The optimum distribution of mass  between the 
bumper and main wall also coincides with experimental findings at high velocities. 

The model is not expected to correlate with experiment in  the velocity ranges at 
which data a r e  usually collected (the low and intermediate ranges). Therefore, in any 
attempt at verifying the model or using the results, it must be assured that the system 
is operating in  the high velocity range. The expected velocities for hazardous meteoroids 
will surely be within the high velocity range. The model should give some insight into 
the relation of parameters in the determination of ballistic limits fo r  double-walled 
systems. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., December 8, 1966, 
124-08-0 1- 13 - 23. 
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